

Ku / Ka Sigma-0 analysis

P.Thibaut, S.Peyridieu, J.C.Poisson, P.Prandi, S.Philipps : CLS N.Steunou, N.Picot : CNES

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

Ku / Ka Sigma-0 analysis

- Differences between Ku and Ka sigma0
- MLE3 /MLE4 Ka estimations
- Relations Sig0 / SWH / Mispointing / ECMWF Wind
- □ Ku/Ka AGC and SNR comparisons
- Bloom event observed in Ka (an example)
- □ Rain Cell observed in Ka (an example)
- □ Ku/Ka Sig0 on iced regions

AltiKa and Jason-2 data

	AltiKa	Jason-2	
Frequency band	Ка	Ku	
Cycle(s)	2	178-181	
Tracks	1-1002	1-254	
Start date	2013-04-18	2013-05-11	
End date	2013-05-23	2013-06-04	
Time period	35 days	24 days	
Geographical selection	Distance to coast >10 km && ABS(Latitude)<66°		

	AltiKa		Jason-2	
	MLE-4	MLE-3	MLE-4	
Backscatter coefficient	=SIG0	=10*log10(PUI_MLE3) + KCAL_FACTOR_SIG0	=SIG0	
Signal to Noise Ratio =SNR =10*log10(PUI_		=10*log10(PUI_MLE3/THN_MLE3)	=SNR	

(Ka uncorrected for atmospheric attenuation)

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

http://www.cls.i

Histograms of SIG0, MLE-4 (Ka/Ku)

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

http://www.cls.f

GDR SRL/JA2 X-Overs (< 3 Hours)

Page 6

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

(uncorrected for atmospheric attenuation)

AltiKa Cycles 2-2 deviation, MLE3 Backscatter coeff. (10*log10(PUI MLE3) + KCAL FACT(60 40 20 0 -20 -40 -60 -100 0 100 Standard deviation SIG0 MLE3 Ω 2 Nbr 11880 Std Dev 3.5245581 Min 0.26907376 Mean 3.9460042 Median : 2.203846 Max : 16.581519

http://www.cls.i

.

(uncorrected for atmospheric attenuation)

AltiKa Cycles 2-2

Mean, MLE4 Backscatter coeff. (SIG0)

SIG0_MLE4

8	10		12		14	
Nbr :	11880	Std Dev :	4.2272748	Min :	-8.93009	
Mean :	8.5466407	Median :	9.6579495	Max :	23.41576	

(uncorrected for atmospheric attenuation)

AltiKa Cycles 2-2

an, MLE3 Backscatter coeff. (10*log10(PUI_MLE3) + KCAL_FACTOR_SIG

SIG0_MLE3

ξ	3	1	0	1	2	14
	Nbr :	11880	Std Dev :	4.5246631	Min :	-10.003515
	Mean :	8.5072336	Median :	9.6362737	Max :	26.139717

Along track comparison : MLE3.vs.MLE4

Page 10

http://www.cls.fr

Mean

-0.030848179

Median

0.03228127

1.9686637

Jason-2 / RA-2 / AltiKa $(\sigma_{0_{MLE4}} - \sigma_{0_{MLE3}})$

MISSION: JASON-2, Cycle 19, 1Hz

Ku/Ka Standard Deviation on sig0

Mean SIG0 = f(SWH, ζ^2), MLE-3/4

Ku/Ka dispersion Sig0 / ECMWF WS

AltiKa (Ka band)

AltiKa IGDR

Jason-2 (Ku band)

Jason-2 IGDR

Sigma0 (without att_atmospheric)

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

http://www.cls.f

Gridded maps of AGC AltiKa vs. Jason-2

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

16.769703

Nbr : 11880 Std Dev 4.1837663

-20 -40 -60 0 -100 100 AGC 2 0 4 6 8 10 3.6332316 0.27059799 Nbr : 11880 Std Dev Min

2.3021633

Max

4.1454126

Median

Mean

SNR considerations

.

Page 16

• Several studies have been made during AltiKa development to assess hypothesis on σ 0 and atmospheric attenuations

 σ 0 Ka = σ 0 Ku [Topex] – 1,5 dB $\approx \sigma$ 0 Ku [Jason] – 3,5 dB

- Some margins have been considered in the link budget during development : system margin, ageing, mispointing and rain attenuation
- In flight assessment : better SNR than expected
 - Measured AltiKa $\sigma 0$: $\sigma 0$ Ka $\approx \sigma 0$ Ku [Jason] 2,5 dB => i.e. 1 dB greater than $\sigma 0$ hypothesis considered during development
 - The 3,5 dB margins allocated to mispointing, system margin and ageing provide additional capacity to withstand higher rain rates than targeted
 - Thus, a few data are lost due to atmospheric attenuations

Gridded maps of SNR, MLE-4 AltiKa vs. Jason-2

SNR MLE4

4

2.0040286

3.9125058

100

6

Min

Max

0.18113153

12.205652

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

-100

2

11880

3 8795088

Std Dev

Median

60

-20

-4(-60

0

Nbr :

Mean

Along-track examples : Bloom event

AltiKa Cycle 2 track 894

http://www.cls.fr

Latitude

AltiKa Cycle 2 track 894

Along-track examples : Rain event

Page 20

http://www.cls.f

Ka/Ku Sigma0 on Ice

Envisat

Page 22

AltiKa cycle 2

Conclusions

- Very good instrumental behavior
- □ MLE3/MLE4 quite equivalent at such altitude
- In flight SNR, better than expected because of margins in the link budget
- Only a few data are lost due to the atmospheric attenuation

Page 24

Thank you !

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse

http://www.cls.fr

Ka Sigma0 DSP

Page 25

Backscatter coeff. Power Spectra AltiKa, MLE-4 vs. MLE-3

ABS(LAT)<60 Distance to coast > 10 km FLG_DALT == 0 FLG_ITER_SLA == 0

Saral/AltiKa 1st Verification Workshop, 2013, August 27th - 29th, Toulouse