

Calibration and Validation of SARAL/AltiKa Geophysical Products

Suchandra Aich Bhowmick

Space Applications Centre Indian Space Research Organization

Our Team: K.N Babu, Rashmi Sharma, Raj Kumar, A.K Shukla and R. M Gairola

> SARAL/AltiKa NRT Verification Workshop Toulouse, France

AltiKa onboard SARAL (Satellite for ARgos and ALtiKa), a joint ISRO-CNES effort is the first milestone of high frequency radar altimetry. SARAL satellite was lauched on 25, February, 2013 from SHAR

AltiKa Payload contains

- •Ka Band altimeter with enhanced bandwidth of 500 MHz
- •Dual Frequency radiometer (27/37 GHz)
- Laser Retro-reflector Array
- DORIS

Products derived from SARAL AltiKA

- Range along with known geoid is used to derive Sea Surface Height (SSH)
- Slope of leading edge of Wave Form is used to estimate <u>Significant Wave</u> <u>Height (SWH)</u>

Strength of returned power used for estimation of wind speed

Required accuracies of the products at various stages of data product

Parameter	OGDR	IGDR	GDR	Goal
Significant Wave height (SWH)	0.5 m	0.4	0.4	0.25m
Sea Surface Height Anomaly (SSHA)	30.5cm	5.3 cm	4.6cm	2-3cm
Wind Speed	2m/s	1.7 m/s	1.7 m	1m/s

Rationale of the study

Orbit precession of altimeters often changes during in-flight phase due to hostile environment in space. It affects accuracy of measurements . Due to this, accuracy of all other geophysical products derived from altimeter measurements are affected. Thus in-flight calibration of altimeter measurements and validation of geophysical parameters is needed to check if their errors are within the pre-defined range or not.

Data Used:

✓ In-situ tide gauge measurements of SSH at absolute calibration site in Kavarati (March-June, 2013).

✓ Jason-2 OGDR, IGDR and GDR products (March-June, 2013).

✓ In-situ measurements from NDBC Buoy Data (March-June,2013).

✓ SARAL /AltiKa OGDR, IGDR and GDR products.

SARAL AltiKa: Calibration at Indian Site

Absolute Calibration Site in India

o Kavaratti<mark>gauge</mark>

ŝ

6

ŝ

ē

Geoid

Gradient

SARAL AltiKa SSH Calibration at Indian Site Kavaratti

The absolute sea surface height bias of AltiKa over Kavaratti double site

Cycle # (day	Absolute bias in AltiKa sea surface height (cm)					
of pass)	OGDR		IGDR		GDR	
	Main jetty	NIOT Jetty	Main jetty	NIOT Jetty	Main jetty	NIOT Jetty
1 (02/04/13)	2.66	2.49	-3.01	-3.18		
2 (07/05/13)	-2.87	-1.28	-2.09	-0.50		
3 (11/06/13)		-0.56		2.33		

The absolute sea surface height bias between AltiKa and tide gauge observations are meeting the retrieval specifications for the AltiKa OGDR and IGDR products over Kavaratti double site.

SARAL AltiKa SSHA Cross-Calibration at Crossover points using Jason-2 at OGDR level

high quality of measurement.

SARAL /AltiKA Validation

Objective : It aims to assure that the accuracies of the derived products are well within the mission requirement at can be used for various applications study.

Inter-comparison of OGDR SWH from SARAL/AltiKa and Jason-2

Inter-comparison of OGDR SLA from SARAL/AltiKa and Jason-2

Statistics of SLA from SARAL/AltiKa when compared to Jason-2 (cm)

	AV_J2	STD_J2	AV_SRL	STD_SRL	RMSE	
MAR	3.22	9.77	-3.19	10.44	9.48	
APR	-2.53	7.51	-9.5	7.55	10.03	
MAY	1.67	11.66	-4.96	15.08	13.39	
JUN	1.06	10.44	-4.51	11.45	10.0	
JUL	4.44	11.56	-4.36	12.12	12.05	

Inter-comparison of OGDR Wind Speed from SARAL/AltiKa and Jason-2

Validation of SARAL/AltiKa SWH with NDBC Buoys for month of March, 13 to Jun, 30 2013

Validation of SARAL/AltiKa GDR products for 13-19, March 2013 using NDBC buoys

	GDR
BIAS	0.275
RMSE	0.37
CORREL	0.971

The statistics generated with 7 days of GDR SWH shows an improved correlation and bias. However the RMSE is found high which is counterintuitive. Thus we need more data for validation.

What kind of improvement have we achieved using SARAL/AltiKa over other preceding altimeters ?

Validation of GDR SWH from Jason-2 for Jan -Jun, 2009 Jason-2 SWH (m) y = 0.934x + 0.156 $R^2 = 0.698$ Δ

NDBC Buov measurements of SWH (m)

	EnviSAT (2005)	Jason 2 (2009)	SARAL/AltiKa (2013)
BIAS (m)	0.642	0.156	0.288
RMSE (m)	1.07	0.611	0.417
CORREL	0.74	0.83	0.88

Other Advantage of having SARAL/AltiKa

1. The nearness of Ka band to the coast and it higher density of measurements

Reduction in tracking errors

Gate number

Prediction from 11-May-2013

Model Forecast State for 12-May-2013 (00:00 UTC) Overlay of corresponding SARAL Track for 12-May-2013 (00:15 - 00:22 UTC)

Assimilation of the SARAL/AltiKa tracks in wave model SWAN nested in WAM in operational mode at SAC, ISRO for Indian Ocean Region during cyclone Mahasen (10 May-13 May 2013)

6

5

4

3.5

3

2.5

2

1.5

1

0.5

SARAL/AltiKa track in analysis hour

Thanks