One & Two-Dimensional Wind Speed Models for Ka-Band Altimetry

John Lillibridge NOAA Laboratory for Satellite Altimetry

> **Remko Scharroo** EUMETSAT

Saleh Abdalla ECMWF

Doug Vandemark University of New Hampshire

Outline

- 1. Motivation
- 2. Applications
- 3. Backscatter (σ^{0}) Attenuation
- 4. One-Dimensional WS model: f (σ^{o})
- 5. Two-Dimensional model: f (σ^{o} , SWH)
- 6. Conclusions

Motivation

- Initial Cal/Val Products:
- Attenuation correction = 0
- Ku wind speed model inappropriate for Ka-band

Preliminary 1D model of Abdalla (2013):

- Adjust σ^{0} histogram to match Ku distribution
- Utilize existing Ku wind speed model

Our improved formulation:

- Physically based attenuation correction
- 1D and 2D models tuned to Ka backscatter
- Important for SSB models based on WS

Aaritime Monitoring

Applications: Typhoon Soulik

NOAA/NWS utlizing AltiKa Wind/Wave information in 2013 Hurricane Season

Based on ITU radar propagation algorithms

- Dry troposphere (oxygen) = f (Press, Temp)
- Wet troposphere = f (Water Vapor Content)
- Rain / Fog = f (Liquid Cloud Water)

Polynomial fits to Ka-band frequency results Driven by NOAA/NCEP GFS model grids Double correction to account for round trip...

 $\Delta \sigma_{\rm dry}^o = \begin{cases} 0.094 - 0.177 \ p' - 0.145 \ t' + 0.274 \ p't' \text{ for Ku-band} \\ 0.310 - 0.593 \ p' - 0.499 \ t' + 0.956 \ p't' \text{ for Ka-band} \end{cases}$ $p' = p/1013 \quad p = \text{ pressure in hPa}$ $t' = 288.15/t \quad t = \text{temperature in K}$

 $\Delta \sigma_{wet}^o = \begin{cases} 1.45 \times 10^{-3} \ w + 0.66 \times 10^{-5} \ w^2 \ \text{for Ku-band} \\ 7.21 \times 10^{-3} \ w + 4.43 \times 10^{-5} \ w^2 \ \text{for Ka-band} \end{cases}$

 $\Delta \sigma_{\text{rain}}^{o} = \begin{cases} 0.169 \, L \text{ for Ku-band} \\ 1.070 \, L \text{ for Ka-band} \end{cases} \sim 7X$

Follow formalism from Abdalla (2007)

- Originally Developed for Envisat's Ku-band altimeter
- Only dependent on backscatter
- Two-branch model: linear (low) + exponential (high)

 $U_m = \begin{cases} \alpha - \beta \sigma^o & \text{if } \sigma^o \le \sigma_b \\ \gamma \exp(-\delta \sigma^o) & \text{if } \sigma^o > \sigma_b \end{cases} \qquad U_{10} = U_m + 1.4U_m^{0.096} \exp(-0.32U_m^{1.096})$

Correct AltiKa σ^{0} for attenuation first Fit model coefficients to ECMWF winds Expect different linear slope at Ka vs. Ku

 $\alpha = 34.2$ $\beta = 2.48$ $\sigma_b = 11.409$ $\gamma = 711.6$ $\delta = 0.42$

wind (sa) - cycle 001 - 2013/03/14 - 2013/04/18

AltiKa First Verification Workshop: 27-29 August, 2013

AltiKa - ECMWF Bias (m/s)

Standard Deviation of Differences (m/s)

Use Direct Hybrid Method as done for SSB

- 1. Bin ECMWF wind speed in σ^{0} / SWH grid
- 2. Blend with background 1D parametric model
- 3. Smooth using data density to achieve hybrid model

AltiKa First Verification Workshop: 27-29 August, 2013

Validation with In Situ Buoys

Validation of 1D-model with Theory

Conclusions

Physical model provides attenuation correction

- Investigate using radiometer TPW and CLW
 One-dimensional wind speed model
- Better approach to fit to Ka-band backscatter
- Slightly higher variability than historical Ku-band results *Two-dimensional wind speed model*
- Reduced std. dev. of differences with ECMWF winds
- Scatterplot not symmetric (underestimates high winds)
 NOAA has embraced AltiKa NRT wind/wave data!

Conclusions

Thanks very much to the SARAL/AltiKa project teams at ISRO, CNES, and EUMETSAT for providing low-latency OGDRs, with very high quality, so quickly after launch!