The impact of Saral/Altika wave data on the wave forecasting system of Météo-France : update

L. Aouf, J-M. Lefèvre

Division Marine et Océanographie, Météo-France

Saral/Altika first verification workshop, Toulouse 27-29 August 2013

1- Motivation

motivation

- Only Jason-2 is used in the operational wave forecasting system : the need of using one more altimeter is crucial in order to get more accurate sea state parameters
- Evaluate the impact of the assimilation of Saral/Altika wave data on the wave forecasting System
- Assessement of data quality control procedure
- Preparing Saral/Altika wave data for operational use

Saral/Altika wave data and QC procedure

- → Saral NRT products are downloaded in NETCDF format from ftp.saral.oceanobs.com : period 31 March to 1 August 2013
- Quality control procedure is implemented to prepare the data the assimilation in the wave model :

Land flag	0	
RMS_SWH/4.15	<=0.3 m	
SWH Min	0.5 m	Threshhold values in
SWH Max	13 m	Teu as for Jason-2
Ice flag	0	
σ0 Min	5 db	
σ0 Max	30 db	
Number of valid	>=35	
ροιπία		Toujours un temps d'avance

Example of QC check (cycle 1: 31/03 to 18/04)

Before QC Nb of data : 1009860

After QC Nb of data : 797581

~21 % Saral Sig. Wave heights are rejected before the assimilation

Histograms of Saral sig. wave heights

Example of QC check (June and July 2013)

Before QC Nb of data : 3272808

After QC Nb of data : 2516442

~23 % Saral Sig. Wave heights are rejected before the assimilation

Histograms of Saral sig. wave heights

Distribution of Saral data on wave model grid

Assimilation of altimeters

- \rightarrow Optimal interpolation on SWH (Significant wave height)
- \rightarrow Correction of wave spectra using empirical laws and assumptions

Saral wave obs are collocated with model grid points : Super-observations

Example of 1-day global coverage of SARAL Sig. wave height (~5800)

Description of runs : from 31 March 2013 to 1 August 2013

- Test runs set-up
 - Wave model MFWAM (global coverage 0.5x0.5° irregular grid), wave spectrum in 24 frequencies (starting 0.035 Hz) et 24 directions
 - ECMWF analyzed winds every 6 hours
 - Assimilation time step 6 hours
- → Assimilation of Saral/Altika Sig. wave heights
- → Assimilation of Saral and Jason-2 sig. wave heights

→ Outputs from the operational forecasting system (MFWAM with assimilation of Jason 1 & 2)

 \rightarrow **Baseline** run of MFWAM without assimilation

Assimilation of Saral/Altika Sig. Wave heights Validation with Jason 1 &2

Assimilation of SARAL/Altika in MFWAM in different ocean basins : April and May

Assimilation of SARAL/Altika in MFWAM in different ocean basins : June and July

Assimilation of Saral and Jason-2 Sig. Wave heights : Validation with Jason-1

SI = 9.8% RMSE = 9.9% Slope = 1 .00 Intercept = -0.04

Data collected : 533551

SI€13.7%

RMSE=14.2%

Intercept=-0.21

CE

ance

Slope=1.10

April-May-June 2013

Assimilation of Saral and Jason-2 in MFWAM in different ocean basins : April, May and June (until 21)

Validation with Jason-1

Bias of MFWAM in Southern Hemisphere

Bias in cm

Bias in cm

MFWAM-NOASSI ASSI-SRL

VALIDATION OF SWH WITH BUOYS DATA

Data are collected from the JCOMM model intercomparison archive produced by J. Bidlot (ECMWF))

ODAS-03 FR

Bouée 03FR le 16 mars 1999 Photo Météo-France

80 60 40 -atitude (degrees) 20 0 -20 -40 -60 -80 60 120 180 240 300 0 Longitude (degrees) METEO FRANCE

Toujours un temps d'avance

buoys locations

Validation with buoys Sig. Wave heights

Scatter index of SWH (%)

NOASSI : without assimilation ASSI-SRL : assimilation of SARAL/Altika ASSI-SRL-JA2 : assimilation of SARAL and Jason-2 OPER : Operational MFWAM with assimilation of Jason-1 & 2

April-May-June 2013 (29005 collected data) METEO FRANCE

The impact of the assimilation in the period of forecast Sig. Wave heights

1 is 0-24h average period, 2 is 24-48h,...

Blue : assimilation of Saral and Jason-2 Red : assimilation of Saral only Black : without assimilation Comparison with Jason 1 & 2

The impact of the assimilation of Saral/Altika SWH : Forecast period

Difference between runs of MFWAM with and without assimilation

2-day forecast starting from 30 April 2013, by step of 6 hours

Validation MFWAM Operational with SARAL Sig. Wave heights

High positive bias of SWH in South. Hemis.

Bias map for April and May 2013

Validation MFWAM Operational outputs with SARAL Sig. Wave heights

bias on swh (mfwam-oper) using SARAL data April and May

bias of SWH is significantly reduced

Bias map for April and May 2013

Validation MFWAM Operational with SARAL Sig. Wave heights

High positive bias of SWH in South. Hemis.

Bias map for June and July 2013

Validation MFWAM Operational outputs with SARAL Sig. Wave heights

bias of SWH is significantly reduced

Bias map for June and July 2013

Validation of MFWAM with SARAL Sig. Wave Heights

Conclusions

- The runs for June and July showed the same tendency : good quality of Saral/Altika significant wave heights
- positive impact on the wave analysis and forecast : ready to be used operationnaly in MFWAM (waiting for the availability of Altika on the GTS in BUFR format)
- The use of Saral with Jason-2 showed very promising results (the SWH errors are greatly reduced SI<9% in the tropics)
- The work is in progress concerning the use of Saral/Altika in regional model MFWAM-Réunion (0.25°) !

