

Multi-band radar altimetry to study hydrology of boreal wetlands and estuaries

E. Zakharova, LEGOS K. Guerreiro, LEGOS

ALTIKA over wetlands

AltiKa waveforms track 51

cycle 1, snowy

Water/ice dominated footprints -

possibility of freeze/wetness/level studies

specula waveforms

cycle 2, snowy

cycle 3, melting

ALTIKA - ENVISAT over snowy/icy wetlands

ALTIKA - ENVISAT over wetlands

April to June This is not noise - these are bogs/lakes

ALTIKA over Kara Sea

ALTIKA over Kara Sea

Kara Sea

ALTIKA over Kara Sea: Sigma and Height

Cycle 3, 7 June

Landsat 8 June 2013

no geophysical corrections

ALTIKA over Kara Sea: Sigma and Height

ALTIKA over **Ob'** estuary

The Ob' estuary

ALTIKA - ENVISAT over estuary March April May Brigthness temperature, K 000 072 075 075 075 075 Number of observation **ENVISAT-RA2** June August

An empirical algorithm of ice differentiation

Sigma0,dB

Sigma0,dB

Sigma0,dB

ALTIKA - ENVISAT over estuary

An empirical algorithm of ice differentiation

ALTIKA - ENVISAT over estuary

Validation

Good tool for small scale ice differentiation!

What about larger scales?

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

■ Ice with TB>230 K

cycle 1 & subcycle 1 with Sigma>45dB

cycle 1 & subcycle 1 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 1 & subcycle 2 with Sigma>45dB

cycle 1 & subcycle 2 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 1 & subcycle 3 with Sigma>45dB

cycle 1 & subcycle 3 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 1 & subcycle 4 with Sigma>45dB

cycle 1 & subcycle 4 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 1 & subcycle 5 with Sigma>45dB

cycle 1 & subcycle 5 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 2 & subcycle 1 with Sigma>45dB

cycle 2 & subcycle 1 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 2 & subcycle 2 with Sigma>45dB

cycle 2 & subcycle 2 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 2 & subcycle 3 with Sigma>45dB

cycle 2 & subcycle 3 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 2 & subcycle 4 with Sigma>45dB

cycle 2 & subcycle 4 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 2 & subcycle 5 with Sigma>45dB

cycle 2 & subcycle 5 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 3 & subcycle 1 with Sigma>45dB

cycle 3 & subcycle 1 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 3 & subcycle 2 with Sigma>45dB

cycle 3 & subcycle 2 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 3 & subcycle 3 with Sigma>45dB

cycle 3 & subcycle 3 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 3 & subcycle 4 with Sigma>45dB

cycle 3 & subcycle 4 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 3 & subcycle 5 with Sigma>45dB

cycle 3 & subcycle 5 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 4 & subcycle 1 with Sigma>45dB

cycle 4 & subcycle 1 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

Ice with TB<230 K

cycle 4 & subcycle 1 with Sigma>45dB

cycle 4 & subcycle 1 with Brightness temp<230K

Sea ice melting seen by both the radiometer and the radar

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

■ Ice with TB>230 K

cycle 4 & subcycle 2 with Sigma>45dB

cycle 4 & subcycle 2 with Brightness temp<230K

Evidence in snow/ice melting with AltiKa!

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

■ Ice with TB>230 K

cycle 4 & subcycle 4 with Sigma>45dB

cycle 4 & subcycle 4 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

■ Ice with TB>230 K

cycle 4 & subcycle 5 with Sigma>45dB

cycle 4 & subcycle 5 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 5 & subcycle 1 with Sigma>45dB

cycle 5 & subcycle 1 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

■ Ice with TB>230 K

Ice with TB<230 K</p>

cycle 5 & subcycle 2 with Sigma>45dB

cycle 5 & subcycle 2 with Brightness temp<230K

Ice with Sigma0<45 dB

Ice with Sigma0>45 dB

Ice with TB>230 K

cycle 5 & subcycle 3 with Sigma>45dB

cycle 5 & subcycle 3 with Brightness temp<230K

ALTIKA - ENVISAT Conclusions

•AltiKa is a good continuation for wetland studies especially with its better resolution.

•Signal characteristics represent some very good tools for ice detection/extension.

Introduction of radar use to observe melting sea ice provides us with new information

Thank you for your attention!