

PEACHI Prototype for Expertise on AltiKa for Coastal Hydrology and Ice

N. Picot, A. Guillot, G. Valladeau, P. Thibaut

Motivations for coastal activities

- Coastal area is a region of high variability
 - -> need to use as much as flight and in-situ data as possible
- SARAL will complement the current virtual constellation (JA2, CY), knowing that the phasing of 2 satellites is not optimal
- The use of the Ka-band frequency will supply more accurate measurements -> improvement of the spatial and vertical resolution
- Among SARAL/AltiKa main scientific goals is the study of coastal dynamic processes (small or medium scale phenomena)
 -> anticipate many downstream applications (SWOT mission)
- Several projects on-going to increase the use of altimeter data in the coastal area (CoastAlt, PISTACH)

Main Objectives

- Realization of a prototype for analyzing and improving dedicated processings relative to the SARAL mission
- Analyse and validation of the existing algorithms before their application in the operationnal products
- New algorithms and parameters implemented during the exploitation phase
- The prototype will also be able to extract parameters to be provided to expert scientists
- Complementarity/continuity with the altimeter products provided in the open ocean

State of the art

- Available data in the prototype from S-GDR AltiKa products: cycle 1 and part of cycle 2
- Operationnal processing for retracking, radiometer, tide and MSS
- · Dedicated algorithms: new low-pass filtering to compute the 1Hz data
 - computation of new troposphere corrections from ECMWF 3D vertical fields of temperature and humidity
 - additional geophysical corrections: FES 2012, DTU MSS, MDT 2013, ...
 - additional instrument corrections: SSB coupled with WW3 or with 40 Hz SWH values, ...
- Prototype routinely performed to provide expert scientists the most up-to-date improvements on the ground processing for Ka-band studies

Presentation outline

- AltiKa waveforms over coastal edges
- Radiometer coastal performances
- Additional geophysical correcton: FES 2012 tide model

The PEACHI retracking process

Page 7

- Example for Cycle 1/Pass 887 (acsending pass) in EDP mode for the Tunisian gulf (leaving coast)
- Good retrieval of the transition between the Tunisian Gulf and the Mediterranean Sea
- + 16 points considering BAGP algorithm

-> 2400 m spatial coverage in addition

- Example for Cycle 1/Pass 887 (acsending pass) in EDP mode for the Tunisian gulf (approching coast)
- Again, + 14 points with BAGP algorithm close to the coast
- Expected waveform classification for better results with Red-3 algorithm

- Example for Cycle 1/Pass 416 (close to 887) in median tracker mode close to Slovenia (approching coast)
- Continuity is ensured between open ocean and coastal waveforms thanks to BAGP and Red-3 coastal retrackings
- Better retracking of the AltiKa waveform with Red-3

Page 10

Conclusions on retracking algorithms:

- > First results about the BAGP retracking algorithm display very good behaviour
- ➤ Concerning Red-3, even with early good results, the waveform classification is expected to be further studied and compared to MLE4 and BAGP retrackers
- ➤ On-going studies are performed on the global performance of coastal retracking algorithms over coastal areas
- → Providing the best settings for each algorithm and thus improve the AltiKa ground processing

- Radiometers: large contrast between ocean (170 K) and land (280 K) brightness temperatures -> contamination on coastal measurements depending on spatial resolution
- Spatial resolution results from the combination of the antenna directivity (-3 dB width) of various radiometers computed from the antenna patterns
- AltiKa radiometer has the finest resolution

	Envisat	JMR	AMR	AltiKa
23,8 GHZ	17 km	36 km	25 km	12 km
Channel 2	25 km	22 km	12 km	8 km

- Expected performances for AltiKa are confirmed by the measurements: brightness temperatures are free from contamination up to 10 km from the coast
- On Envisat/MWR, last valid ocean TB is extrapolated

- So far, no dedicated processing is applied on coastal approach for AltiKa radiometer: the wet troposphere correction shows no contamination up to 10 km from the coast
- On J2/AMR, S. Brown (2010) coastal algorithm is applied

- Impact of the extrapolation processing on Envisat brightness temperature
- Considered as a good alternative to the contamination in the lack of a L2 processing dedicated to coastal approach

- Comparing to Envisat, AltiKa radiometer displays a large number of measurements in coastal areas
- Moreover, no threshold appears on along-track interpolated brightness temperatures

Page 16

- Conclusions: Very good performances of AltiKa radiometer on coastal approach up to 10 km
- ➤ <u>Additionnal features:</u> The classical approach uses brightness temperatures for the 2 radiometer channels and Sig0 for the altimeter
 - In the frame of PEACHI, **2 additionnal parameters** are used as inputs for the inversion as proposed by Obligis, 2009:
 - **SST:** to compensate from the lack of a surface channel (18,7 GHz)

- **Gamma:** to indicate a possible inversion of the temperature decrease with the altitude

→Expected better performances on global ocean and especially near the coast on upwelling areas

FES 2012 tide model

Page 17

- FES2012 is based on T-UGO model
- A new global high resolution mesh has been generated from this bathymetry and starting from FES2004 mesh. The strategy followed was to:
- Keep or improve FES2004 coastal resolution (5-7 km in P2)
- Locally resample FES2004 coastlines (Antarctic, Baltic sea ...)
- Increase mesh resolution above bathymetry slopes (ridges, continental shelves)

 Along coastal areas, FES models tend to reduce the variance and thus improve the altimeter SLA comparing to other tide models

FES 2012 tide model

age 18

- Comparing both FES tide models:
 - Difference of variances display that the new FES2012 tide model globally improve the SSH (compared to FES04 tide model currently computed in AltiKa products)
 - The map of the difference of variances display strong improvements in coastal areas more than open ocean (difference locally greater than 7 cm²)

AltiKa CalVal meeting 27/08/2013

Conclusion

- AltiKa is working well in coastal areas, data quality appears nominal close to the coast
- In the frame of the PEACHI project, retracking algorithms and radiometer wet troposphere correction among others will be further investigated to provide users the best solutions
- PEACHI will help us testing new solutions, this prototype is much more flexible than PISTACH one's
- Validation/comparison: comparison with different datasets provided by expert scientists
 - comparison with products provided by PISTACH and COASTALT projects
 - comparison with the CY2 SAR retracked data

Futures on ground processing improvements

- Computation of the MLE3 algorithm to be compared to the MLE4 retracking algorithm
- L2 radiometer algorithm dedicated to coastal areas and based on the Shannon Brown algorithm
- Analyses on both wind and attenuation with Remko's results
- Estimate of the SSH in the Arctic Sea (related to the ESA phase 2 CCI project)
- New tide models: new release of the FES model (expected mid 2014)
 - DTU13 tide model
 - TPXO8
 - ETO11a

Thank you for your attention!