

Validation of SARAL/AltiKa geo-physical products using in-situ and satellite observations

Suchandra A. Bhowmick Ocean Sciences Division Atmospheric and Oceanic Sciences Group Space Applications Centre Ahmedabad

Contributors OSD: Raj Kumar and Rashmi Sharma Contributors CVD: A.K Shukla, K.N babu, S. V. V Arun Kumar

• At low wind the Ku band Sigma 0 is low (negative) while Ka band is having much signal strength at low wind.

• But at high winds ku-band sigma0 slightly more than ka band sigma0 but both are of the same order 90S -

Actual Wind Speed from Jason-2 March 2013

12DE

- 4

-6

6ÓE

-10

180

-2

120W

6

4

2

6ÓW

10

8

Inter-comparison of the SARAL/AltiKa geo-physical products with Jason-2 at OGDR and IGDR Level

OGDR

IGDR

Significant Wave Height

OGDR

IGDR

Validation of the SARAL/AltiKa geo-physical products with NDBC Buoy at OGDR and IGDR Level

Assessing impact of assimilating SARAL/AltiKa SWH in numerical model

<u>Study Area:</u> Indian Ocean region 60°-90°E longitudes and -11° to 22° N latitudes. Spatial resolution 0.5° x 0.5°. The model output is at every 6 hours.

Forcing Wind : The 6-hour analysis and forecast wind field from NCMRWF at a $0.25^{\circ} \ge 0.25^{\circ}$

Boundary Condition : From the WAM model (-70° to 70° N and 0° to 160° E)

<u>Method:</u> The SWAN model run in f/c mode operationally using NCMRWF wind forcing to produce three type of forecast.

1.Forecast without assimilation

2. Forecasts with assimilation of SARAL/AltiKa SWH

Before going to the forecast cycle, spin up was given from 01 Jan to 12th March 2013.

Assimilation Technique: Optimum Interpolation

Number of passes per day

SARAL has maximum two to three tracks i.e. at 00UTC, 06 UTC and 18 UTC. However on 13th March when SARAL/Altika data started flowing in the number of tracks over study area was only one.

Impact of SWH assimilation in wave height forecast of SWAN from 00 UTC of 14th March 2012

60E 63E 66E 69E 72E 75E 78E 81E 84E 87E 90E (SAC/ISRO) Forecast from 00Z14MAR2013

60E 63E 66E 69E 72E 75E 78E 81E 84E 87E 90E Forecast from 00Z14MAR2013 (SAC/ISRO)

DIFFERENCE IN WAVE HEIGHT (m) of 12714MAR2013 21N 15N 12N 3N ΕQ 39 65 **9**S

63E 66E 69E 72E 75E 78E 81E 6ÓE 84E 87E 90E Forecast from 00Z14MAR2013 (SAC/ISRO) DIFFERENCE IN WAVE HEIGHT (m) F/C of 18Z14MAR2013

60E 63E 66E 69E 72E 75E 78E 81E 84E 87E 90E Forecast from 00Z14MAR2013 (SAC/ISRO)

Plots showing difference between assimilated wave field and wave field without assimilation

0.9 0.8 0.7 0.6 0.5 0.4 0.3

Impact of SWH assimilation in swell height forecast of SWAN from 00 UTC of 14th March 2012

60 63 66 69 72 75 78 81 84 87 90 Forecast from 00Z14MAR2013 (SAC/ISRO)

Impact of SWH assimilation in wave period forecast of SWAN from 00 UTC of 14th March 2012

60E 63E 60E 60E 72E 75E 70E 81E 84E 87E 90 Forecast from 00Z14MAR2013 (SAC/ISRO) eoe 63e 66e 69e 72e 75e 78e 81e 84e 87e 90 Forecast from 00Z14MAR2013 (SAC/ISRO

ole oše ode oše 72e 75e 78e ole oše oše oš Forecast from 00Z14MAR2013 (SAC/ISRO) 60E 63E 66E 69E 72E 75E 78E 81E 84E 87E 90E

Plots showing difference of mean wave period in with and without assimilation runs.

Over all impact of the AltiKa SWH assimilation on the analysis field is very significant.

The SARAL/AltiKa Track 00UTC of 23/03/13

The SWAN Model Background 00UTC of 23/03/13

The SWAN Model analyzed field 00UTC of 23/03/13

Difference of Assimilated and control run on 00 UTC of Mar 23, 2013 after continuous assimilation from Mar 13-23, 2013.

Shows significant impact of the AltiKa SWH assimilation on the analysis field

6ÓE

63E 66E 69E 72E 75E 78E 81E 84E

SWAN Model Background 12UTC of 23/03/13

10

4.5

2.5

1.5

0.5

87E 90E

21

18

15 12

3

2.5

1.5

0.5

SWAN Model analyzed field 12UTC of 23/03/13

Difference of analysis and background field on 00 UTC of 24th March 2013 at end of continuous assimilation cycle from13th March -24th March, 2013. Large difference due to very high SWH of AltiKa

