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General context

@GeCLS

Boom of Al in remote sensing !
- Phi-Lab at ESA organizing PhiWeek event, see LPS Milan

Some Al startups

- Annotation platform: Biggle, Scale, DataVlab (ESA BIC nord: nouvelle startup 2019)
- Optical images: EarthCube (France)

- Analytics with images SAR (descarteslab, URSA),...

Context of data analytics platform (DIAS, PEPS...)

Recent interest of community

- 1st workshop Leveraging Al in the Exploitation of Satellite Earth Observations & Numerical
Weather Prediction by NOAA

- lce charting working group (IICWG) with recent discussion on “big data and Machine Learning’

- Journées thématique |A/ocean/climate/atmosphere

U

So far limited studies for SAR-based cryosphere applications

» Kaggle by C-Core for iceberg versus vessel detection from SAR images

* SAR-based sea ice classification: one group from Univ Waterloo Canada
* Oceanography: nothing, except our IFREMER/IMT-A/CLS initiative !

What about altimetry community ?


http://phiweek2018.esa.int/agenda/files/session92.pdf
https://biigle.de/
https://scale.ai/
https://www.descarteslabs.com/
https://www.ursaspace.com/
https://www.star.nesdis.noaa.gov/star/documents/meetings/2019AI/AI.Workshop_4th_circular.pdf
https://nsidc.org/sites/nsidc.org/files/files/noaa/iicwg/2018/IICWG-XIX_Meeting_Exec_Summary.pdf
https://ai4climate.lip6.fr/2019/01/08/journee-thematique-ia-ocean-atmosphere-climat-a-rennes-le-6-fevrier/

Deep Learning technics ?
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Machine Learni e . : . .
achine Learning Classification/segmentation of images and Machine Learning ?

Gaw, — L"tl‘ . E%% _. -> Need for handcrafting features

Input Festure axirackion Classifcation Qutput ML applicable to oceanic SAR images ?
Deep Learning * Intrinsic variability for a given phenomenon
E E E E - * Depending on metocean and observation conditions
Input Feature extraction +Classifcation Output Deep Learning -> data-based feature extraction + classification

DL applicable to oceanic SAR images?
* Need for training database with annotated/labelled SAR images

Computing Power (GPU...) + Frameworks by Google/Facebook/... + Crowdsoucing
capabilities with Internet (ImageNet) + Data availability => Boom of Deep Learning

Challenge classification ILSVRC (ImageNet), 1001 classes, 1M+ images
Deep Convolutional Neural Network (CNN)
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- Softmax Architecture of the Inception v3



Used Al - Deep Learning technics
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Image classification CNN

Semantic segmentation FCN

label:pat on back of other person
predict: - -



Used Al - Deep Learning technics

Image classification CNN




Context for ocean SAR images
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Overwhelming amount of data from Copernicus satellites:
» Every day representing a daily average of 3,45 TB of S1a/S1b data published

A significant amount covers ocean surface, used for a wide range of applications involving public
and private stakeholders.

* Few operational services from SAR: sea ice, oil spill, EMSA/Frontex...

* Few other operational products: wind field (for EMR), waves (see CMEMS),...

Do we really exploit the full imaging capabilities of these C-band SAR data acquired over the
ocean’s surface?

To name a few, atmospheric fronts, oceanic fronts, rain cells, micro convective cells, internal waves,
gravity waves, biologic slicks, upwelling or wind streaks can be observed !
* being totally discarded in the SAR images.

Short/mid term objectives: automatically and systematically tagged all the observed phenomena

Opening many potential perspectives:
Sciences, operational services, space data
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. Sentinel-1 Constellation Observation Scenario: "ﬂq sentinel-1
Based on Wave Mode imagettes (20 x 20 km). Revisit & Coverage Frequency ...t
Mode by default: see in White -> . -"ﬁm:&;
- See TenGeoP-SARwv (https://doi.org/10.17882/56796) N

37k + 10k labelled imagettes with one label per imagette -
10 classes _ :
Resampled with 50 m spatial resolution {-_' : o
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General results
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IMT Atlantique
e la Loire

Training/cross-validation/testing: 75/20/5%

Fine-tuned Inception-V3 Model:

97.5 % accuracy on cross validation(CV)
97.1% on test set.

Convolution

#wvgPool

MaxPool
oncat

[«
@ Dropout
@ Fully connected
- Softmax

“Fine-tuned”: Starting weights of the model comes

from training on the ImageNet dataset

Ecole Mines-Télecom
aner |

Architecture of the Inception v3

Assessment with independent 10k database: interest for multi-labelling,

establishment of classification confidence

ROC to multi-class DL model
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Al-based automatic detection of metocean features on WM

Wind Streaks in January 2016 Sea Ice in January 2016
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Micro Convective Cell in January 2016
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Used Al - Deep Learning technics

Semantic segmentation FCN




Semantic segmentation (Objective)
e0ecLS

* Estimation of SIC in Arctic from SAR image

2016/04/01
Sea Ice Concentration
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« Sentinel-1 (S1A/S1B) : SAR
« HHetHV

« 2016 — 2017 — 2018
« 1528 EW images
--> 400 km par 400 km
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Architecture - FCN —UNet [1]
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_ MetNo-like
Sentinel 1 ice chart

(S1A/S1B)

SAR |
HH

Input Output

Wind
Speed
model

 Concatenate

Resolution decrease

Max-Pooling

' Déconvolution

—>» Convolution
\ / I Contextual information

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net : Convolutional networks for biomedical image
segmentation”. In: International Conference on Medical image computing and computer-assisted intervention. Springer.
2015, pp. 234-241.




Prediction by patches
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3 channels images:
HH corr, HV corr, Wind

Speed

Paich cutting with
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Patch prediction
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maitrix of Patch tacking
patchs

Predicted image
(with the same
size as the
original image)
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16
Results
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Original image: HH Original imae:H
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* Overall good prediction
SAR images
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Results
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Original image: HH Original image: HV
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» Overall good prediction

* Better generalisation with deeper network SAR images

(patch size 448 with 5 layers)

Osisaf

Reference
data

Tests result

Ice concentration [%]
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» Overall good prediction

* Better generalisation with deeper network SAR images

(patch size 448 with 5 layers)
* Overprediction for 95% SIC class

Reference
data

Test
results

Ice concentration [%]
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Results

» Overall good prediction

- Better generalisation with deeper network
(patch size 448 with 5 layers)

* Overprediction for 95% SIC class
* Better agreement with OSISAF for low SIC

OGeCLS

Original image: HH

SAR images

M\}etNo data Osisaf

Reference
data

Test Patch size : 224
>
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Tests result
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* Overestimation compared to OSISAF SIC
« Spead for intermediate classes (20% -> 75%) (same with MetNo)
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Used Al - Deep Learning technics
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Time series analysis RNN / LSTM

label:pat on back of other person
predict: - -
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Database AltiKa with "ground truth" provided by S-1 lead data
OGeCLS

Collocation between AltiKa/SARAL tracks and S-1 data during winter 2015-
2016 for AltiKa

About 100 images selected with consolidated sea ice (SIC > 50%)

About 1h time lag at best




Database AltiKa with ground truth provided by S-1
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OSISAF drift [m.h-1]

For each 40Hz WF: Compute distance from nadir to closest lead
If distance below a given threshold, consider "lead" as ground truth,
otherwise "not lead"



Build RNN / LSTM (experimental)
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Recurent neural Network: networks with loops allowing ® @
persistence of information, adapted to time series [jj
analysis i
O,
Time steps : 128 per WF
Nb features : 71 WF LSTM unit
For each block of 71 WF, one label "lead/non lead" corresponding tc o ’
the central WF e R
1
0 Xt @ X1
25
. About 40 000 samples
Lead or not lead . (128x71) for training

provided by SAR
lead product for
central position

100

About 10 000 samples
(128x71) for
testing/validation
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Some very preliminary results ~—~_
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s Some very preliminary results
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Perspectives:
Consolidate the approach !!

Build DL model to estimate
distance of leads from nadir
(reprocess data with no AGC
& no tracker accounted for)



