

MSS_CNES_CLS_2015 **Presentation & assessment**

MSS Characteristics

T/P

P. Schaeffer, Y Faugere, M-I Pujol CLS

> A Guillot, N Picot **CNES**

Fig 2: calibrated error in centimeter.

Fig 1:Mean Sea Surface CNES_CLS 2015. Heights are in meter above T/P ellipsoid.

Mapping Method

The method is based on a optimal interpolation (details are given in Schaeffer et al. 2012. The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data, Marine

All SSH (ERM & GM) were corrected from the oceanic variability (SLA). A particular attention was paid concerning Geodetic Missions for which time averaging is not possible. SLA are the result of a space-time optimal interpolation (Le Traon, P.-Y., and G. Dibarboure. 2004. An illustration of the contribution of the TOPEX/Poseidon-Jason-1 tandem mission to mesoscale variability studies. Mar. Geod. 27:3– 13). The method developed allows us to reduce drastically the effect of oceanic variability and moreover to homogenize the mean oceanic content with an arbitrary period. Figure 3 show the impact of this method applied on Cryosat-2 data.

Spatial coverage

Spatial resolution

Reference period

Reference ellipsoid

Dataset

Noise budget

-100

Removing Oceanic Variability Objective Analysis of SLA

Geodesy, 35:sup1, 3-19).

Where:

• θ_{est} is the estimation of the MSS(λ , ϕ),

• Φ_{obs} are the altimetric data,

•C_{ii} is the covariance/correlation function between observations and the position to be estimated,

•A _{i.i} is the covariance matrix between observations and their noises budget. This budget includes three terms which are a white noise, a noise related to the ocean variability and a long wavelength bias.

Fig 3: Variance of Cryosat-2 SLA before and after dynamical SLA variability correction.

SSH along geodetic tracks was corrected from ocean surface variability in order to retrieve the seasonal and interannual SSH component. This correction is however limited when considering wavelengths < ~200km.

MSS_CNES_CLS_2015 assessment

Fig 2: SLA PSD and SLAPSD ratio. Comparison of SLA along Envisat repetitive tracks (EN) and geodetic tracks (ENN). SLA PSD ratio along Jason-2 tracks is used as reference ratio.

50 Err reduced by

(km)

ENN / EN SLA PSD ratio, MSS_CNES_CLS_2011 used ENN/EN SLA PSD ratio, MSS_CNES_CLS_2015 used J2 / J2 PSD ratio, MSS_CNES_CLS_2011 used

Comparison of SLA PSD along repetitive tracks and geodetic tracks positions reveled **omission errors** on MSS_CNES_CLS_2011 for wavelength < ~200km.

Reduction of the MSS error along Envisat geodetic tracks (not used for MSS_CNES_CLS computation).

•Maximal error reduction near wavelength 60km.

Mean MSS Error reduction on the [0, 200km] wavelength range : -90% (-0.83 cm rms) **Results confirmed along independent HY-2A tracks**

> VAR(SLA MSS_CNES_CLS_2011) – VAR(SLA MSS_CNES_CLS_2015) (Wavelengths [0, 250 km])

SLA variance along HY-2A tracks confirmed the reduction of the MSS errors at wavelengths < ~250km with MSS_CNES_CLS_2015 (note that HY-2A measurements are independent from all the MSS solutions).

>SLA Variance reduction along geodetic structures when comparing MSS_CNES_CLS_2015 with MSS_CNES_CLS_2011: up to XX cm² at wavelengths [0, 250km]

The comparison between MSS_CNES_CLS_2015 and MSS_DTU15 underlines

Nearly the same capability of retrieving geodetic structures in both the MSS solutions.

Local SLA variance increase with MSS_CNES_CLS_2015 highlight some structures more accurately retrieved in MSS_DTU15.

A global SLA variance reduction at wavelengths [0, 250km] when using MSS_CNES_CLS_2015 rather than MSS_DTU15: more important commission errors in MSS_DTU15:

-Mean reduction of ~ 0.4 cm² \rightarrow It is the signature of the noise signal observed on MSS_DTU15.

-Max reduction in dynamic areas : up to 2 cm² \rightarrow Ocean variability less accurately corrected in MSS_DTU15

Costal areas are better retrieved with MSS_CNES_CLS_2015.

Evolution as a function of the distance to the coast of the mean SLA variability along the HY-2A tracks shows the evolution of the quality of the different MSS solutions near the coast.

>Main differences observed in the [0, 30km] band near the coast

Significant improvement of the MSS_CNES_CLS solution in Arctic region : Comparison of the SLA variance along Envisat tracks during the important melting ice that occurred in 2007 shows a significant reduction of the errors previously observed with MSS_CNES_CLS_11 in the Laptev Sea.

Difference of the variance of the SLA Fig 3a: selected on wavelength < 250km along HY-2A when MSS_CNES_CLS_2011 and tracks MSS CNES CLS 2015 is used. Statistics computed over year 2015.

Fig 3b: same as Fig3a, but comparing SLA variance using MSS_CNES_DTU15 and MSS_CNES_CLS_2015.

and

DIFI: VAR(SLA MSS CNES CLS11 REF20) - VAR(SLA_MSS_CLS_2 \ [21015,21120][]: VAR(SLA_MSS_DTU15) -

to the coast, and using different MSS solution. (Latitudes $> 60^{\circ}$ are excluded

➢ Results obtained with MSS_CNES_CLS_2015 are comparable to results. obtained with MSS_DTU15.

and MSS CNES DTU15 MSS_CNES_CLS_2011 MSS_CNES_CLS_2015 used. MSS_CNES_CLS_2015. is Statistics computed over [July, October 2007.

Perspectives

Key issues for the next MSS generation:

 \geq MSS reference period & correction of the ocean surface variability for wavelengths < \sim 200km.

➢ Coastal areas

Sea ice contaminated areas

Recommendations:

>Accurate along-track MSS estimation along repetitive tracks : need repetitive track over long period; new repetitive tracks ?

 \geq MSS estimation strongly benefits from geodetic missions. Reduction of the ocean variability along theses tracks is however primordial \rightarrow need geodetic missions, with different temporal period coverage.

integration of a very high density of altimeter measurement ?