Equatorial band: Topex was right from the start. An upcoming correction of Jasons and Swot Nadir ground segments.

Comparison of Jason-3 and Sentinel-6MF observations in the equatorial band: was Topex right from the start?

♣ Emeline Cadier, Geoffroy Bracher, Claire Maraldi, Bastien Courcol, Cécile Kocha, Pierre Prandi, Marie-Isabelle Pujol, François Bignalet-Cazalet ecadier@groupcls.com

Background

- Comparison between S6MF and J3 range over the tandem phase shows:
 - → a 4 mm-amplitude band around the equator (between 1°S and 3.5°N),
 - → a second band around 40°S on ascending tracks only.

Reported in [1] and [2]

- Not observed between J2 and J3, nor between J1 and J2.
- But identical signature observed between TOPEX and J1.
- → As the Jason missions are consistent with one another, the responsibility was naturally put on TOPEX, until the launch of S6MF.

References:

[1] Cadier E et al, Assessment of Sentinel-6MF low resolution numerical retracker over ocean: continuity on reference orbit and improvements,

under review.
[2] Nilsson J et al, Global cross-calibration of the jason-3 and sentinel-6 michael freilich missions during their tandem period. Poster OSTST 2022. doi: 10.24400/527896/a03-2022.3354.

[3] Schaeffer P et al. (2012) 'The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data', Marine Geodesy. doi: 10.1080/01490419.2012.718231.

[4] Courcol B et al: Impact of POE-G orbits on Sentinel-6 MF and Jason-3 altimetric performances, 30 YPRA (2024), Poster.

[5] Kocha C et al: 30 years of sea level multi-mission reprocessed to improve climate and mesoscale satellite data record , 30 YPRA (2024), Oral presentation.

Track the anomaly down to Jasons

Mean profiles ([3]) comparison between missions on the reference track and independent missions (E2/EN/AL):

- Equatorial band visible on Jasons curves,
- Neither on TOPEX nor S6MF.

Same results with S3A and S3B.

→The equatorial band comes from the Jason series.

Anomaly in Jason's and SWOT Nadir ground segments

Detection of an anomaly in the range estimation (inconsistent rounding methods).

Note: The U-shape of these curves will be reduced with S6MF POE-G orbit (see [4]).

Generation of J3 L2 data (3 cycles) with a test version of GDR-F including a patch:

- Difference between patched and original ranges:
 - No bias at the equator, at track extrema and around 40°S for ascending tracks.
 - -3.65 mm bias everywhere else
- Affects all retrackers and frequencies,
- Corrects the **two latitudinal bands** on S6MF/J3 range bias.
- → This anomaly is the **root cause** of the observed bands.

Correction

In operational ground segments: **SWOT Nadir GDR-S2** (Fall 2024) and **GDR-G for Jasons** (2025).

In the meantime, users can apply an approximate correction available for download below:

- based on J3 patched dataset,
- function of latitude, with a distinction between ascending and descending tracks,
- valid for Jason missions flying on the reference track only.

This correction shows great results on J1 data over its tandem phase with TOPEX:

What about L2P DT2024?

- Implemented before the ground segment anomaly detection
- Jasons' datasets corrected at first order through regional biases using **S6MF as reference** [5].

Conclusions

- → The equatorial band error detected more than 20 years ago and attributed to TOPEX at the time is now proven to be due to an artifact in Jasons' ground segments.
- →This anomaly also causes for the 2nd band at 40°S.
- → It is a great example of the importance of tandem flights.

