


## Mesoscale Eddy Trajectories Atlas Product Handbook

## META3.0exp Near-Real-Time



Reference: SALP-MU-P-EA-23488-CLS Issue: 1 rev 0 Date: March 2021



### Mesoscale Eddy Trajectories Atlas Product Handbook META3.0exp NRT

SALP-MU-P-EA-23488-CLS

Iss :1.0 - date : 24/03/2021

i.1

\_\_\_\_\_

| Chronology Issues: |            |                                               |
|--------------------|------------|-----------------------------------------------|
| Issue:             | Date:      | Reason for change:                            |
| 1.0                | 2021/03/24 | 1 <sup>st</sup> issue from former User Manual |

Mesoscale Eddy Trajectories Atlas Product Handbook META3.0exp NRT

SALP-MU-P-EA-23488-CLS

Iss :1.0 - date : 24/03/2021

\_\_\_\_\_

#### List of Acronyms:

| ADT<br>AVISO+<br>C3S | Absolute Dynamic Topography (=SLA+MDT)<br>Archivage, Validation et Interprétation des données des Satellites Océanographiques<br>Copernicus Climate Change Service http://climate.copernicus.eu/<br>Collecte Localisation Satellites |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLS<br>CMEMS         | Copernicus Marine Environment Monitoring Service                                                                                                                                                                                     |
| CNES                 | Centre National d'Etudes Spatiales                                                                                                                                                                                                   |
| DUACS                | Data Unification and Altimeter Combination System                                                                                                                                                                                    |
| FTP                  | File Transfer Protocol                                                                                                                                                                                                               |
| MDT                  | Mean Dynamic Topography (difference between Mean Sea Surface (MSS) and<br>Geoid)                                                                                                                                                     |
| NetCDF               | Network Common Data Format                                                                                                                                                                                                           |
| OSU                  | Oregon State University                                                                                                                                                                                                              |
| SLA                  | Sea Level Anomaly (a.k.a. sea surface height with respect to a mean sea surface)                                                                                                                                                     |

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

\_\_\_\_\_

#### List of figures

| Figure 1: Top, initial ADT variable. Bottom, after the filter is applied as an input for N<br>eddy detection.                                                           | NRT3.0exp<br>3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure 2: Top) ADT contours analysed for the NRT META3.0exp product; middle) final                                                                                      | eddies         |
| detected; bottom) mask of the eddies in the ADT.                                                                                                                        | 4              |
| Figure 3 : Eddy tracking; each color corresponds to a different day                                                                                                     | 6              |
| Figure 4: The radius is varying with the latitude                                                                                                                       | 7              |
| Figure 5: Tracking procedure : the eddy number 1 is kept because an association is fo<br>map J3, contrary to the eddy number 2 where no association is found on the las |                |

Figure 6: The association of two consecutive observations takes into account the contamination by land in the trajectory: if the land is inside the defined area A, the tracking is stopped

8

#### **Reference documents**

Mason, E., Pascual, A., McWilliams, J.C., 2014. A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmospheric Ocean. Technol. 31, 1181–1188. https://doi.org/10.1175/JTECH-D-14-00019.1

# Mesoscale Eddy Trajectories Atlas Product Handbook META3.0exp NRT

\_\_\_\_\_

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

#### Contents

| 1. Overview of this document                                      | 1   |
|-------------------------------------------------------------------|-----|
| 2. The Mesoscale Eddy Trajectories Atlas                          | 1   |
| 2.1.1. Rationale                                                  | , 1 |
| 2.1.2. Versioning of the AVISO+ Mesoscale Eddy Trajectories Atlas | . 2 |
| 2.2. Acknowledgments                                              | 2   |
| 2.3. User's feedback                                              | 2   |
| 3. Processing                                                     | 2   |
| 3.1. Input data                                                   |     |
| 3.2. Algorithm                                                    | 2   |
| 3.2.1. Filtering                                                  | . 3 |
| 3.2.2. Detection                                                  | . 3 |
| 3.2.3. Estimation of eddy characteristics                         | . 5 |
| 3.2.4. Tracking                                                   | , 6 |
| 4. Description of the product                                     | 8   |
| 4.1. Product general content and specifications                   |     |
| 4.2. Nomenclature of files                                        |     |
| 4.3. NetCDF                                                       | 9   |
| 4.4. Structure and semantic of NetCDF files 1                     |     |
| 5. How to download a product 1                                    | 2   |
| 5.1. Registration                                                 |     |
| 5.2. Access Services 1                                            |     |
| Appendix A - Product header 1                                     | 3   |

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

#### **1. Overview of this document**

This document is the user manual for the Mesoscale Eddy Trajectories Atlas NRT (**META3.0exp**) product, processed by CNES/CLS in the DUACS system.

2.1.2This version is generated and quality-controlled following the methodology developed by E. Mason at the Instituto Mediterráneo de Estudios Avanzados (IMEDEA, Spain The algorithm benefits from upgrades added through this collaboration, and the META3.0exp dataset is distributed by AVISO+.

This document describes

the near-real-time version 3.0 Experimental (NRT META3.0exp) product, released since September 2019

The document is organized as follows:

- Chapter 2; presentation
- Chapter 3; processing: input data and method applied
- Chapter 4; the product description, with the different files provided, the nomenclature & the file format
- Chapter 5; how to download the product.

#### 2. The Mesoscale Eddy Trajectories Atlas

#### 2.1.1. Rationale

The mesoscale circulation is defined as a class of energetic phenomena of spatial dimensions ranging from tens to hundreds of kilometers and spanning days to years. The mesoscale structures are mainly generated by currents instabilities, from the ocean large-scale circulation instabilities due to wind or topographic obstacles, creating variability around the ocean's mean state.

Altimetry enables observations of such phenomena by measuring the sea surface height, where currents swirl around local highs and lows through the geostrophic balance between the pressure gradient force and the Coriolis acceleration. The best resolution is obtained with several satellites to study and understand eddies, whose diameters range from 100 to 300 km, when the ground track separation at the Equator is about 315 km for Jason. The existence of at least two satellites operating simultaneously is therefore necessary for research on mesoscale features.

The analysis of Sea Surface Height (starting with Sea Level Anomalies, now more with Absolute Dynamic Topography) from merged satellite data reveals the areas of high eddy activity, the number of eddies per year, their horizontal scale and amplitude. Such a census helps understand ocean dynamics due to eddies, and to discriminate eddies' effect from other processes (like the Rossby waves). This reveals that most of the mesoscale features are "non-linear", i.e. that these features are coherent structures (as opposed to planetary waves that would be linear). Moreover, eddies can transport heat, salts and nutrients trapped within them if they rotate faster than they move-- also as opposed to planetary waves that would not transport water parcels. Some regions see more anticyclonic eddies (highs in the Sea Surface Height), like the Tehuantepec and Papagayo eddy area, others more cyclonic eddies, such as seen in the Humboldt Current.

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

#### 2.1.2. Versioning of the AVISO+ Mesoscale Eddy Trajectories Atlas

The versioning of the different Mesoscale Eddy Trajectories Atlas is detailed on the AVISO+ website:

https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscaleeddy-trajectory-product.html

#### **2.2. Acknowledgments**

When using the product:

**Mesoscale Eddy Trajectories Atlas product in near-real-time 3.0exp**, please cite: "The altimetric Mesoscale Eddy Trajectories Atlas (META3.0exp NRT) is produced by SSALTO/DUACS and distributed by AVISO+ (<u>https://www.aviso.altimetry.fr/</u>) with support from CNES, in collaboration with IMEDEA".

#### 2.3. User's feedback

The product is an **experimental** product.

Therefore, each and every question, comment, example of use, and suggestion will help us improve the product. You're welcome to ask or send them to <u>aviso@altimetry.fr</u>.

#### 3. Processing

#### 3.1. Input data

The data used are described in Table 1: Input product used .

| Eddy product                     | Input data                                                | Variable                                        | Origin                       |
|----------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------|
| Near-real-time<br>version 3.0exp | "all-satellite" daily Near Real<br>Time DUACS2018 version | Gridded Global Absolute<br>Dynamic Topographies |                              |
|                                  |                                                           | (ADT)                                           | http://marine.copernicus.eu/ |

#### Table 1: Input product used

The NRT product is based on "all-satellite" input products, that allows a better sampling of the ocean at a given time. Indeed the focus on short period of time with a best sampling is in the interest of using a NRT product.

The eddy detection is made on ADT maps to avoid a) misinterpreting eddies with a permanent signature and b) that the displacement of large currents creates anomalies similar to eddies.

#### 3.2. Algorithm

The algorithm used for this product is derived from the one described in (Mason et al., 2014).

The main processing steps are described in this section. Some steps can vary from the paper cited above and some steps are the same (explicitly indicated).

This section highlights the improvements used for this version with respect to the previous one.

#### 3.2.1. Filtering

The Sea Surface Height field includes a wide range of features, ranging from small to large-scale ones. Eddies are identified as features with diameters of 100-300 km, so the first step is to remove larger scale variability using a low pass filter. Large-scale variability was computed by smoothing the ADT field with a third order Lanczos filter with a half-power cutoff wavelength of 500 km. The result was subtracted from the original ADT data to produce a high-pass filtered grid which contains only mesoscale variability (Figure 1).

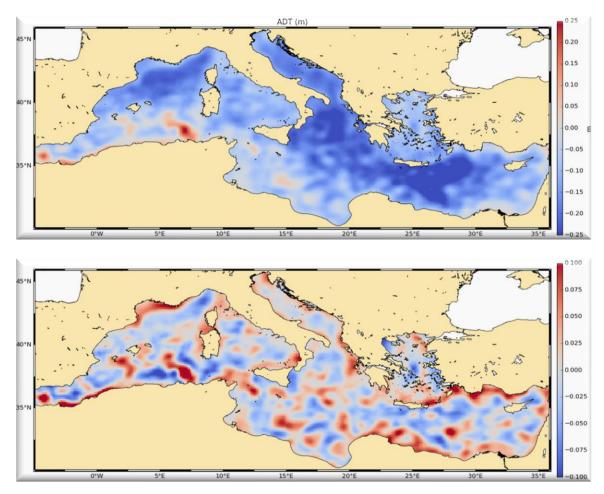
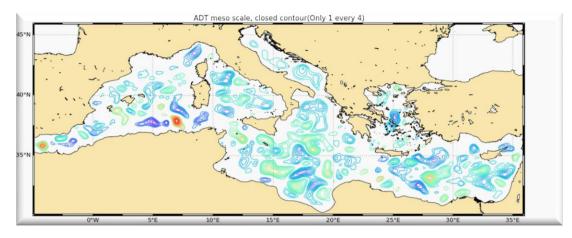
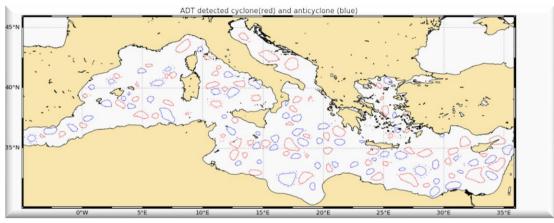



Figure 1: Top, initial ADT variable. Bottom, after the filter is applied as an input for NRT3.0exp eddy detection.

#### 3.2.2. Detection


The detection is made in two steps


1/ By the identification of ADT closed contours between -100/100 cm and at each 0.25 cm interval, closed contours are identified and analyzed (see Figure 2 top). An eddy is identified if some characteristics follow some criteria.

The full explanation can be found in (Mason et al., 2014).

2/ Next, the center of the eddy is defined as the center of the circle which fits best with the contour of the maximum speed. The corresponding radius is then calculated as the radius of this best fit circle.

3/ Characteristics are calculated as described in Table 2.





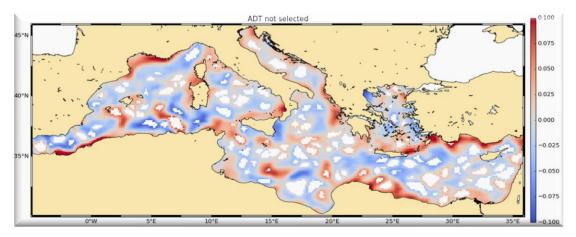



Figure 2: Top) ADT contours analysed for the NRT META3.0exp product; middle) final eddies detected; bottom) mask of the eddies in the ADT.

#### 3.2.3. Estimation of eddy characteristics

After the detection, we compute an estimate of different eddy characteristics, provided as variables within the dataset:

| Characteristic      | Value                                                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| Center<br>position  | Longitude and latitude of the center of the best fit circle with the contour of maximum circum-average geostrophic speed |
| Amplitude           | SSH(local_extremum) – SSH(outermost_contour)                                                                             |
| <u>Radius_speed</u> | Radius of the best fit circle with the contour of maximum circum-average geostrophic speed                               |
| Speed_average       | Average geostrophic speed of the contour defining the speed radius                                                       |
| Speed profile       | Profile speed average values from effective contour inwards to smallest inner contour                                    |
| Effective contour   | Largest contour of the detected eddy                                                                                     |
| Speed contour       | Speed contour of the detected eddy                                                                                       |

# Table 2: Characteristics of eddies for NRT META3.0exp (the full variables are detailed in<br/>section 4)

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

#### 3.2.4. Tracking

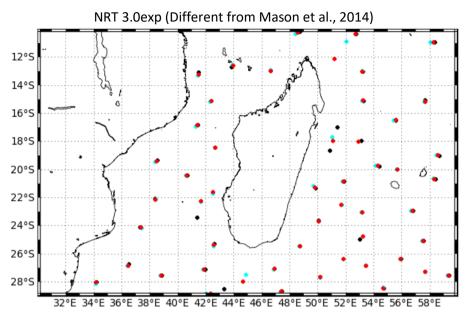
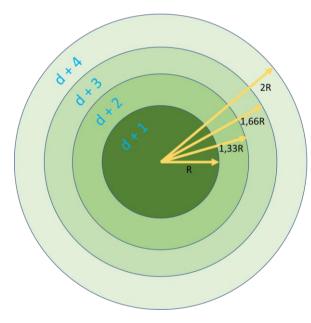




Figure 3 : Eddy tracking; each color corresponds to a different day



After performing detection on several consecutive days, we apply a procedure to build the trajectories over time of the detected eddies.

To search for next observation on D+1, we build a circle of radius R that encompass an area to find linked observations. If several observations are found within this circle, a cost function is applied, which must be minimized to link two observations and consider they are two different positions of the same eddy.

The cost function depends on the amplitude and position (to compute distance) variables.

If no observation linked to the eddy is found

in D+1 map, the research process is done on Day+2 and until D+4 maps with circles of growing radius as shown on the figure.

#### The radius R depends on the latitude:

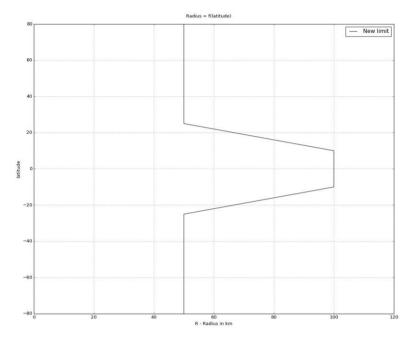



Figure 4: The radius is varying with the latitude

#### Loss of the eddy position on one or several maps:

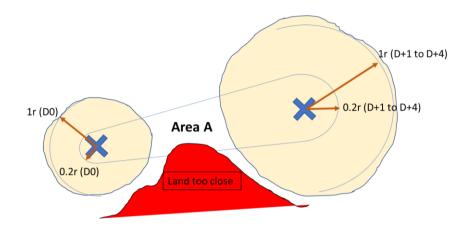

The tracking procedure allows the loss of one to three consecutive observations as illustrated in Figure 5. This can happen sometimes due to identification thresholds criteria and/or map quality. Then, the lost eddy is reconstructed using interpolation. This information is given is the file in the variable 'observation\_flag'.



Figure 5: Tracking procedure : the eddy number 1 is kept because an association is found on map J3, contrary to the eddy number 2 where no association is found on the last map.

#### Contamination by land:

The tracking process takes into account the proximity of the land in the trajectory of the eddy. When the two positions are defined at D0 and D+1 or more, an area A is defined as a function of the radius r of the eddy. The trajectory is stopped if some land is found in the area A.



# Figure 6: The association of two consecutive observations takes into account the contamination by land in the trajectory: if the land is inside the defined area A, the tracking is stopped

After the tracking, only trajectories lasting at least 10 days are selected and delivered.

#### **4.** Description of the product

#### 4.1. Product general content and specifications

| Eddy product                     | Covered period                                  | Spatial<br>coverage              | Delivery<br>format                                                                     | Update |
|----------------------------------|-------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|--------|
| Near-real-time<br>version 3.0exp | 01/01/2018 – ongoing<br>with 15 days of latency | 0 to 360°E -<br>82.5°S to 82.5°N | Two Netcdf files<br>(one for cyclonic<br>eddies and one<br>for anticylonic<br>eddies). | Daily  |

#### Table 3: Characteristics of the product delivery

Note that the numbering of the eddies may differ from one day to another one so this variable should not be taken as the basis for comparison between files.

Mesoscale Eddy Trajectories Atlas Product Handbook

META3.0exp NRT

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

#### 4.2. Nomenclature of files

#### eddy\_trajectory\_cyclonic\_nrt\_3.0exp\_%Y%m%d\_%Y%m%d.nc and

#### eddy\_trajectory\_anticyclonic\_nrt\_3.0exp\_%Y%m%d\_%Y%m%d.nc

include the whole time series of the data processed for the version META3.0exp. Each day, the second date increments to update the period of coverage.

#### 4.3. NetCDF

The products are stored using the NetCDF CF format. NetCDF (network Common Data Form) is an interface for array-oriented data access and a library that provides an implementation of the interface. The NetCDF library also defines a machine-independent format for representing scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. The NetCDF libraries define a machine-independent format for representing scientific data. Please see Unidata NetCDF pages for more information on the NetCDF software package: <a href="http://www.unidata.ucar.edu/packages/netcdf/">http://www.unidata.ucar.edu/packages/netcdf/</a>

NetCDF data is:

- Self-Describing. A NetCDF file includes information about the data it contains.
- Architecture-independent. A NetCDF file is represented in a form that can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- Direct-access. A small subset of a large dataset may be accessed efficiently, without first reading through all of the preceding data.
- Appendable. Data can be appended to a NetCDF dataset along one dimension without copying the dataset or redefining its structure. The structure of a NetCDF dataset can be changed, though this sometimes causes the dataset to be copied.
- Sharable. One writer and multiple readers may simultaneously access the same NetCDF file.

The NetCDF version provided here is version 4 "classic".

SALP-MU-P-EA-23488-CLS Iss :1.0 - date : 24/03/2021 \_\_\_\_\_ 10

#### 4.4. Structure and semantic of NetCDF files

All the eddies detected are stored in two files: cyclonic and anticyclonic.

| Variable name                   | Description                                                                                                                                           | Standard_na<br>me | Dimensions          | Units             |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|
|                                 | .0exp_cyclonic_%Y%m%d_%Y%m%d.<br>.0exp_anticyclonic_%Y%m%d_%Y%m                                                                                       |                   |                     |                   |
| NetCDF-CF                       |                                                                                                                                                       |                   |                     |                   |
|                                 | ack is stored end-to-end on one dime<br>k, and thus allows to separate tracks.                                                                        | =                 | ndex). The "tracl   | k" variable       |
| Nbsamples : 50                  |                                                                                                                                                       |                   |                     |                   |
| •                               | nts to store information: if there is mo<br>ofile, the information is interpolated t                                                                  |                   | •                   | ting a            |
| latitude                        | observation latitude                                                                                                                                  | latitude          | (Obs)               | Degrees<br>_north |
| longitude                       | observation longitude                                                                                                                                 | longitude         | (Obs)               | Degrees<br>_east  |
| time                            | days since 1950-01-01 00:00:00<br>UTC                                                                                                                 | time              | (Obs)               | Days              |
| track                           | trajectory identification number                                                                                                                      |                   | (Obs)               | ordinal           |
| observation_number              | observation sequence number,<br>days from eddy first detection                                                                                        |                   | (Obs)               | ordinal           |
| observation_flag                | flag indicating if the value is<br>interpolated between two<br>observations or not (0: observed,<br>1: interpolated)                                  |                   | (Obs)               | boolear           |
| amplitude                       | magnitude of the height difference<br>between the extremum of ADT<br>within the eddy and the ADT<br>around the contour defining the<br>eddy perimeter |                   | (Obs)               | meters            |
| num_contours                    | number of contours selected for this eddy                                                                                                             |                   | (Obs)               | ordinal           |
| effective_contour_<br>latitude  | Latitudes of effective contour                                                                                                                        |                   | (Obs,<br>Nbsamples) | Degrees<br>_north |
| effective_contour_<br>longitude | Longitudes of effective contour                                                                                                                       |                   | (Obs,<br>Nbsamples) | Degrees<br>_east  |
| effective_contour_<br>height    | ADT filtered height for effective contour                                                                                                             |                   | (Obs)               | meters            |

SALP-MU-P-EA-23488-CLS Iss :1.0 - date : 24/03/2021  11

| effective_contour_<br>shape_error | Error criterion of fit on effective contour                                                                      | (Obs)                                                                                                            | %      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------|
| effective_radius                  | radius of a circle whose area is<br>equal to that enclosed by the<br>effective contour                           | (Obs)                                                                                                            | meters |
| speed_contour_<br>latitude        | Latitudes of speed contour                                                                                       | Nbsamples)_northdes of speed contour(Obs, Degrees<br>Nbsamples)Degrees<br>_northered height for speed(Obs)meters |        |
| speed_contour_<br>longitude       | Longitudes of speed contour                                                                                      |                                                                                                                  |        |
| speed_contour_<br>height          | ADT filtered height for speed contour                                                                            |                                                                                                                  |        |
| speed_average                     | average speed of the contour<br>defining the radius scale<br>"speed_radius"                                      | (Obs)                                                                                                            | m/s    |
| speed_radius                      | radius of a circle whose area is<br>equal to that enclosed by the<br>contour of maximum circum-<br>average speed | (Obs)                                                                                                            | km     |
| speed_contour_<br>shape_error     | Error criterion of fit on speed contour                                                                          | (Obs)                                                                                                            | %      |
| inner_contour_height              | ADT filtered height for inner contour                                                                            | (Obs)                                                                                                            | meters |
| uavg_profile                      | speed average values from<br>effective contour inwards to<br>smallest inner contour                              | (Obs <i>,</i><br>Nbsamples)                                                                                      | m/s    |
| latitude_max                      | latitude of amplitude max                                                                                        | (Obs)                                                                                                            |        |
| longitude_max                     | longitude of amplitude max                                                                                       | (Obs)                                                                                                            |        |

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

12

#### 5. How to download a product

#### 5.1. Registration

To access data, registration is required. During the registration process, the user shall accept using licenses for the use of AVISO+ products and services. This product is available for non-commercial uses only.

Register at:

http://www.aviso.altimetry.fr/en/data/data-access/registration-form.html

or, if already registered on AVISO+, request the addition of this product on your personal account on <a href="https://www.aviso.altimetry.fr/no\_cache/en/my-aviso-plus.html">https://www.aviso.altimetry.fr/no\_cache/en/my-aviso-plus.html</a>

and select the product:

"Mesoscale eddy trajectory atlas product"

#### 5.2. Access Services

Note that once your registration is processed (see above), AVISO+ will validate your registration by e-mail as soon as possible (within 5 working days during working hours, Central European Time). The access information will be available in your personal account on <a href="https://www.aviso.altimetry.fr/no\_cache/en/my-aviso-plus.html">https://www.aviso.altimetry.fr/no\_cache/en/my-aviso-plus.html</a>.

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

Appendix A - Product header

```
netcdf eddy trajectory nrt 3.0exp cyclonic 20180101 20190820 {
dimensions:
    obs = 1963946;
    NbSample = 50;
variables:
    ushort amplitude(obs);
        amplitude:description = "Magnitude of the height difference between the extremum of
ADT within the eddy and the ADT around the contour defining the eddy perimeter";
        amplitude:longname = "amplitude";
        amplitude:units = "m";
        amplitude:scale factor = 0.001;
        amplitude:add offset = OLL;
        amplitude:min = 0.004;
        amplitude:max = 1.239;
    float cost association(obs);
        cost_association:description = "Cost value to associate with the next observation";
        cost_association:longname = "cost_value_to_associate_with_next_observation";
        cost association:min = 0.;
        cost association:max = 0.;
    float effective contour height(obs);
        effective contour height:description = "ADT filtered height for effective contour";
        effective contour height:longname = "effective contour height";
        effective contour height:units = "m";
        effective contour height:min = -0.706f;
        effective_contour_height:max = 0.198f;
    short effective_contour_latitude(obs, NbSample);
        effective contour latitude:axis = "X";
        effective_contour_latitude:description = "Latitudes of effective contour";
        effective contour latitude:longname = "effective contour latitudes";
        effective_contour_latitude:units = "degrees_east";
        effective contour latitude:scale factor = 0.01;
        effective contour latitude:add offset = OLL;
    short effective contour longitude(obs, NbSample);
        effective contour longitude:axis = "X";
        effective contour longitude:description = "Longitudes of effective contour";
        effective_contour_longitude:longname = "effective contour longitudes";
        effective_contour_longitude:units = "degrees_east";
        effective_contour_longitude:scale_factor = 0.01;
        effective_contour_longitude:add_offset = 180LL;
    ubyte effective contour shape error(obs);
        effective_contour_shape_error:description = "Error criterion of fit on effective
contour";
        effective contour shape error:longname = "effective contour error";
        effective contour shape error:units = "%";
        effective contour shape error:scale factor = 0.5;
        effective_contour_shape_error:add_offset = OLL;
```

| Mesoscule Eddy Hujectones Alds Hoddet Hundbook                                         |    |
|----------------------------------------------------------------------------------------|----|
| META3.0exp NRT                                                                         |    |
| SALP-MU-P-EA-23488-CLS Iss :1.0 - date : 24/03/2021                                    | 14 |
|                                                                                        |    |
|                                                                                        |    |
| effective_contour_shape_error:min = 4.5 ;                                              |    |
| effective_contour_shape_error:max = 55. ;                                              |    |
| ushort effective_radius(obs) ;                                                         |    |
| effective_radius:description = "Radius of a circle whose area is equal to that enclose | d  |
| by the effective contour" ;                                                            |    |
| effective_radius:longname = "effective radius scale" ;                                 |    |
| effective_radius:units = "m";                                                          |    |
| effective_radius:scale_factor = 50. ;                                                  |    |
| effective_radius:add_offset = OLL ;                                                    |    |
| effective_radius:min = 9100. ;                                                         |    |
| effective_radius:max = 248750. ;                                                       |    |
| float inner_contour_height(obs) ;                                                      |    |
| inner_contour_height:description = "ADT filtered height for inner contour" ;           |    |
| inner_contour_height:longname = "inner contour height";                                |    |
| inner_contour_height:units = "m";                                                      |    |
| inner_contour_height:min = -1.142f ;                                                   |    |
| inner_contour_height:max = 0.176f ;                                                    |    |
| float latitude(obs) ;                                                                  |    |
| latitude(obs) ;                                                                        |    |
| latitude:description = "Observation latitude" ;                                        |    |
| latitude:longname = "latitude of measurement" ;                                        |    |
| latitude:standard_name = "latitude" ;                                                  |    |
| latitude:units = "degrees_north" ;                                                     |    |
| latitude:min = -78.16272f ;                                                            |    |
|                                                                                        |    |
| latitude:max = 83.04803f;                                                              |    |
| float latitude_max(obs) ;                                                              |    |
| latitude_max:axis = "Y";                                                               |    |
| latitude_max:description = "Observation latitude" ;                                    |    |
| latitude_max:longname = "latitude of amplitude max" ;                                  |    |
| latitude_max:standard_name = "latitude" ;                                              |    |
| latitude_max:units = "degrees_north";                                                  |    |
| latitude_max:min = -78.12547f;                                                         |    |
| latitude_max:max = 83.12267f;                                                          |    |
| float longitude(obs);                                                                  |    |
| longitude:axis = "X";                                                                  |    |
| longitude:description = "Observation longitude";                                       |    |
| longitude:longname = "longitude of measurement" ;                                      |    |
| longitude:standard_name = "longitude" ;                                                |    |
| longitude:units = "degrees_east" ;                                                     |    |
| longitude:min = -11.32053f;                                                            |    |
| longitude:max = 362.679f ;                                                             |    |
| float longitude_max(obs) ;                                                             |    |
| longitude_max:axis = "X" ;                                                             |    |
| longitude_max:description = "Observation longitude" ;                                  |    |
| longitude_max:longname = "longitude of amplitude max" ;                                |    |
| longitude_max:standard_name = "longitude" ;                                            |    |
| longitude_max:units = "degrees_east" ;                                                 |    |
| longitude_max:min = 4.272083e-05f ;                                                    |    |
| longitude_max:max = 360.f ;                                                            |    |
| ushort num_contours(obs) ;                                                             |    |
|                                                                                        |    |

Mesoscale Eddy Trajectories Atlas Product Handbook

|                                       | META3.0exp NRT                                               |    |
|---------------------------------------|--------------------------------------------------------------|----|
| SALP-MU-P-EA-23488-CLS                | lss :1.0 - date : 24/03/2021                                 | 15 |
| num contouroidocorintion              | - "Number of contour colocited for this oddy"                |    |
| num_contours:longname =               | = "Number of contour selected for this eddy" ;               |    |
| num_contours:units = "orc             |                                                              |    |
| num_contours:min = 1US ;              |                                                              |    |
| num_contours:max = 614L               |                                                              |    |
| byte observation_flag(obs) ;          | , , , , , , , , , , , , , , , , , , ,                        |    |
|                                       | on = "Flag indicating if the value is interpolated between t | wo |
| observations or not (0: observed, 1:  |                                                              |    |
| observation_flag:longname             |                                                              |    |
| observation_flag:units = "k           |                                                              |    |
| observation_flag:min = 0b             |                                                              |    |
| observation_flag:max = 1b             |                                                              |    |
| ushort observation number(ob          |                                                              |    |
|                                       | ription = "Observation sequence number, days from eddy       |    |
| first detection" ;                    |                                                              |    |
| observation_number:long               | name = "observation number" ;                                |    |
| observation_number:units              | = "ordinal" ;                                                |    |
| observation_number:min -              | = OUS ;                                                      |    |
| observation_number:max                | = 596US ;                                                    |    |
| <pre>byte segment_size(obs) ;</pre>   |                                                              |    |
| <pre>segment_size:min = 0b ;</pre>    |                                                              |    |
| <pre>segment_size:max = 0b ;</pre>    |                                                              |    |
| ushort speed_average(obs) ;           |                                                              |    |
| string speed_average:desc             | ription = "Average speed of the contour defining the radiu   | JS |
| scale speed_radius"                   |                                                              |    |
|                                       | = "maximum circum-averaged speed" ;                          |    |
| speed_average:units = "m <sub>/</sub> | •                                                            |    |
| <pre>speed_average:scale_facto</pre>  |                                                              |    |
| speed_average:add_offset              | = 0LL ;                                                      |    |
| <pre>speed_average:min = 0. ;</pre>   |                                                              |    |
| <pre>speed_average:max = 4.00</pre>   |                                                              |    |
| float speed_contour_height(ob         |                                                              |    |
|                                       | scription = "ADT filtered height for speed contour";         |    |
|                                       | gname = "speed contour height" ;                             |    |
| speed_contour_height:uni              |                                                              |    |
| speed_contour_height:mir              |                                                              |    |
| speed_contour_height:ma               |                                                              |    |
| short speed_contour_latitude(         |                                                              |    |
| speed_contour_latitude:a>             |                                                              |    |
|                                       | escription = "Latitudes of speed contour" ;                  |    |
|                                       | ngname = "speed contour latitudes" ;                         |    |
| speed_contour_latitude:u              |                                                              |    |
| speed_contour_latitude:sc             | —                                                            |    |
| speed_contour_latitude:ac             | —                                                            |    |
| short speed_contour_longitude         |                                                              |    |
| speed_contour_longitude:              |                                                              |    |
|                                       | description = "Longitudes of speed contour";                 |    |
|                                       | longname = "speed contour longitudes" ;                      |    |
| speed_contour_longitude:              |                                                              |    |
| speed_contour_longitude:              | scale_lactor = 0.01;                                         |    |

Mesoscale Eddy Trajectories Atlas Product Handbook

```
Mesoscale Eddy Trajectories Atlas Product Handbook
                                       META3.0exp NRT
                                lss :1.0 - date : 24/03/2021
SALP-MU-P-EA-23488-CLS
                                                                                           16
        speed contour longitude:add offset = 180LL;
    ubyte speed contour shape error(obs);
        speed contour shape error:description = "Error criterion of fit on speed contour";
        speed contour shape error:longname = "speed contour error";
        speed contour shape error:units = "%";
        speed contour shape error:scale factor = 0.5;
        speed contour shape error:add offset = OLL;
        speed contour shape error:min = 3.5;
        speed contour shape error:max = 88.;
    ushort speed radius(obs);
        speed radius:description = "Radius of a circle whose area is equal to that enclosed by
the contour of maximum circum-average speed";
        speed_radius:longname = "speed radius scale";
        speed_radius:units = "m";
        speed radius:scale factor = 50.;
        speed_radius:add_offset = OLL;
        speed_radius:min = 9100. ;
        speed radius:max = 247250.;
    int time(obs) ;
        time:axis = "T" ;
        time:calendar = "proleptic gregorian";
        time:description = "Date of this observation";
        time:longname = "Time" ;
        time:standard name = "time" ;
        time:units = "days since 1950-01-01 00:00:00";
        time:min = 24837;
        time:max = 25433;
    uint track(obs) ;
        track:description = "Eddy identification number";
        track:longname = "track number" ;
        track:units = "ordinal" ;
        track:min = 0U;
        track:max = 60638U;
    ushort uavg_profile(obs, NbSample);
        uavg_profile:description = "Speed average values from effective contour inwards to
smallest inner contour";
        uavg profile:longname = "radial profile of uavg";
        uavg profile:units = "m/s";
        uavg_profile:scale_factor = 0.0001;
        uavg_profile:add_offset = OLL;
// global attributes:
        :Metadata Conventions = "Unidata Dataset Discovery v1.0";
        :comment = "Surface product; mesoscale eddies";
        :creator_email = "aviso@altimetry.fr";
        :creator_url = "https://www.aviso.altimetry.fr";
        :date created = "2019-08-20T04:07:27Z";
        :framework_used = "https://bitbucket.org/emason/py-eddy-tracker";
        :input_product_reference = "https://www.aviso.altimetry.fr/en/data/products/value-
```

added-products/global-mesoscale-eddy-trajectory-product.html";

SALP-MU-P-EA-23488-CLS

lss :1.0 - date : 24/03/2021

17

| :institution = "CLS/CNES in collaboration with IMEDEA" ;<br>:license =              |
|-------------------------------------------------------------------------------------|
| "https://www.aviso.altimetry.fr/fileadmin/documents/data/License_Aviso.pdf";        |
| :product_version = "3.0.exp" ;                                                      |
| :project = "SSALTO/DUACS" ;                                                         |
| :standard_name_vocabulary = "NetCDF Climate and Forecast (CF) Metadata              |
| Convention Standard Name Table" ;                                                   |
| :summary = "This dataset contains eddy atlas from all-satellite NRT CMEMS maps over |
| global ocean (SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS*)" ;                             |
| :time_coverage_duration = "P597D" ;                                                 |
| :time_coverage_end = "2019-08-20T00:002" ;                                          |
| :time_coverage_start = "2018-01-01T00:00:00Z" ;                                     |
|                                                                                     |

:title = "Mesoscale Cyclonic Eddies in Altimeter Observations of ADT";

